PowerTrim: An automated decision support algorithm for preprocessing family-based genetic data.

نویسندگان

  • Tricia A Thornton
  • Jonathan L Haines
چکیده

Statistical genetics software packages for linkage analysis have their own unique constraints on the size and shape of the pedigrees they can process. As a result, researchers are often forced to exclude from analysis some individuals in a given family. Existing procedures for reducing pedigree size to fit computational constraints use arbitrary rules and are not interactive. However, judicious evaluation of which subject(s) to remove to minimize loss of information involves consideration of many factors, including informativeness owing to position in pedigree, availability of genotypic information, and quality of phenotypic information. Thus, automation of this task would be of significant benefit. We designed an interactive algorithm (PowerTrim) that provides the user access to detailed information with which to make informed decisions. In addition, PowerTrim checks for transcriptional and data-entry errors, which can be very time-consuming to localize manually.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model

In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...

متن کامل

A hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements

Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

A Data Mining approach for forecasting failure root causes: A case study in an Automated Teller Machine (ATM) manufacturing company

Based on the findings of Massachusetts Institute of Technology, organizations’ data double every five years. However, the rate of using data is 0.3. Nowadays, data mining tools have greatly facilitated the process of knowledge extraction from a welter of data. This paper presents a hybrid model using data gathered from an ATM manufacturing company. The steps of the research are based on CRISP-D...

متن کامل

Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of human genetics

دوره 72 5  شماره 

صفحات  -

تاریخ انتشار 2003